Übungen zur Vorlesung

Höhere Mathematik für Physiker II

Prof. Dr. Anna Marciniak-Czochra Dipl. Math. Alexandra Köthe

Abgabetermin: 7. Juni 2013, 11:14 Uhr, im Foyer des Instituts für Reine Mathematik (INF 288).

Bemerkung: Wir betrachten \mathbb{R} und \mathbb{C} mit der Standardmetrik versehen.

Aufgabe 1

Sind die folgenden Reihen in \mathbb{R} konvergent? Wenn ja, dann bestimmen Sie ihren Grenzwert!

- a) $\sum_{n=1}^{\infty} (\sqrt{n} \sqrt{n-1})$
- b) $\sum_{n=1}^{\infty} \frac{2n+1}{n^2(n+1)^2}$
- c) $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
- d) $\sum_{n=1}^{\infty} \frac{(n+1)^{n-1}}{(-n)^n}$

6 Punkte

Aufgabe 2

Für $n \in \mathbb{N}$ sei

$$a_n = b_n = \frac{(-1)^n}{\sqrt{n+1}}$$
 und $c_n = \sum_{k=0}^n a_{n-k} b_k$.

Zeigen Sie, dass die Reihen $\sum_{n=0}^{\infty} a_n = \sum_{n=0}^{\infty} b_n$ in \mathbb{R} konvergieren, aber ihr Cauchy-Produkt $\sum_{n=0}^{\infty} c_n$ nicht.

Aufgabe 3

Wir definieren den Binomialkoeffizent $\binom{x}{n}$ für reelle Zahlen x und natürliche Zahlen n durch

$$\binom{x}{n} = \prod_{i=1}^{n} \frac{x-j+1}{j} = \frac{x(x-1)\cdots(x-n+1)}{n!}$$
 insbesondere $\binom{x}{0} = 1$.

a) Sei $x \ge 1$ eine reelle Zahl. Zeigen Sie, dass die Reihe

$$s(x) := \sum_{n=0}^{\infty} \binom{x}{n}$$

in \mathbb{R} absolut konvergiert.

b) Zeigen Sie die Funktionalgleichung

$$s(x+y) = s(x)s(y)$$
 für alle $x, y \ge 1$.

c) Berechnen Sie $s(n+\frac{1}{2})$ für alle natürlichen Zahlen $n\geq 1.$

4 Punkte

Aufgabe 4

a) Zeigen Sie mithilfe des Produktsatzes

$$\frac{1}{(1-z)^2} = \sum_{n=0}^{\infty} (n+1)z^n \quad \text{für alle } z \in \mathbb{C} \text{ mit } |z| < 1.$$

b) Zeigen Sie: Konvergieren die Reihen $\sum_{n=0}^{\infty} a_n^2$ und $\sum_{n=0}^{\infty} b_n^2$ mit $a_n, b_n \in \mathbb{R}$, so konvergiert $\sum_{n=0}^{\infty} a_n b_n$ absolut.