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Abstract

The weakly nonlinear stability of pulses in general singularly perturbed reaction-diffusion
systems near a Hopf bifurcation is determined using a centre manifold expansion. A general
framework to obtain leading order expressions for the (Hopf) centre manifold expansion for
scale separated, localised structures is presented. Using the scale separated structure of the
underlying pulse, directly calculable expressions for the Hopf normal form coefficients are
obtained in terms of solutions to classical Sturm-Liouville problems. The developed theory
is used to establish the existence of breathing pulses in a slowly nonlinear Gierer-Meinhardt
system, and is confirmed by direct numerical simulation.

1 Introduction
The study of localised patterns in systems of reaction-diffusion equations has been a very active
field of research for the last couple of decades. In canonical model systems such as the Gray-
Scott [17] or Gierer-Meinhardt [15] model, far-from-equilibrium patterns were constructed and
analysed in the presence of an asymptotically small parameter, giving the system under con-
sideration a singularly perturbed nature [8, 21]. This singularly perturbed structure induces a
spatial scale separation, which can be used to obtain explicit leading order expressions for the
pattern under consideration (e.g. [6]). These techniques were applied in full generality in [11]
in the context of single pulse patterns, going beyond the existing analysis in the context of the
canonical Gray-Scott and Gierer-Meinhardt models. In [32], this extended theory was applied
in the context of an explicit model, exhibiting new, previously unobserved behaviour: numerical
simulations revealed the existence of stable, temporally oscillating pulses.
The stability analysis of these pulse solutions in [11] led to observation that the most general
pulse destabilisation scenario corresponds to a Hopf bifurcation, an observation that is also
known from the extensive literature on Gray-Scott/Gierer-Meinhardt models [5, 6, 7, 10, 21, 22,
25, 29, 34]. This Hopf bifurcation, and in particular its unfolding, is the main topic of the current
paper. The aim of this paper is to develop a mechanism for the weakly nonlinear analysis of the
aforementioned Hopf destabilisation scenario, through local analysis of the associated centre
manifold.

These ‘breathing’ pulses, such as observed in [32], have been an object of active research
in the field of lasers and optical media during the last two decades. More generally, localised
structures similar to those analysed in [11] are widely studied as optical phenomena, often in the
context of the complex Ginzburg-Landau equation. Breathing localised pulses, also known as
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oscillons, are frequently observed and studied both numerically and analytically, see e.g. [27].
Oscillons are considered as excitable localised structures [16, 33]. As in the context of [11], a
Hopf bifurcation is often regarded as the birthplace of oscillons [12]. For a good overview of
the literature on breathing pulses in optical media, see the introduction in [18]. The terminology
‘breather’ is also used for (sideways) oscillating fronts, often within the context of neural net-
works [4, 14]. See in particular [13], where a the nonlinear stability of a Hopf bifurcation in an
explicit neural network system was carried out using multiple scale expansions.
In a recent publication [19], a somewhat similar approach was taken to numerically investigate
breathing and moving pulses in an explicit three-dimensional reaction-diffusion system. The
same system was analysed in detail in [31, 30], using similar techniques as in [11]. Therefore,
the partial results in [19] can be analytically verified and extended using the analysis in the
present paper on the results found in [31, 30].

The article is structured as follows. In section 2, relevant results from [11] on the existence
and stability of pulse solutions are summarised, (re)introducing notation which will be used
throughout the text. In section 3, the Hopf centre manifold is introduced, together with a scale
separated inner product. Also, the issue of the translational eigenmode is addressed. Since
the systems of reaction-diffusion equations studied in the field of pattern formation – and in
extension localised pattern solutions thereof – exhibit translational invariance, the translational
eigenmode with corresponding (central) eigenvalue λ = 0 is always present when the stability of
the pattern under consideration is assessed. However, it turns out that the Hopf centre manifold
can be foliated along the direction spanned by the translational mode (Theorem 3.3); moreover,
the dynamics along the translational direction turn out to be trivial.

Section 4 is dedicated to the explicit local expansion of the centre manifold established in
section 3, following the method presented in [20]. This introduces a number of new inverse
problems to be solved, along with the analysis of the adjoint linear operator associated to the
linearisation of the pulse solution. In order to obtain explicit expressions for the coefficients
in the Hopf normal form associated with the Hopf centre manifold expansion, both the new
inverse problems and the adjoint operator are treated in more detail in section 5. Here, the
scale separated structure of the underlying pulse solution plays an important role. A general
approach to obtain leading order expressions for the previously encountered inverse problems is
presented, and it is shown how this analysis applies to the inverse problems at hand. Lastly, the
scale separated inner product is used to obtain directly calculable leading order expressions for
the coefficients in the Hopf normal form associated with the Hopf centre manifold expansion
using leading order expressions for the pulse and its eigenmodes. Given the intricate nature
of the problem, this result is quite remarkable: the formal centre manifold expansion leads to
concrete, explicitly computable results, based on explicit leading order expressions for the Hopf
eigenfunctions; see Corollary 5.9.

In section 6, the conditions for the existence and stability of breathing pulses are summarised
in Theorem 6.1. The developed theory is then applied to a model example, the slowly nonlinear
Gierer-Meinhardt equation (6.3), which was the subject of analysis in [32]. The explicit leading
order expressions available for the pulse and its eigenfunctions allow one to obtain directly
computable eigenvalues, and in extension directly computable values of the Hopf normal form
coefficients. For this example, it is shown that the extension of the canonical Gierer-Meinhardt
model with a slowly nonlinear term introduces a Hopf bifurcation which can change its nature
from sub- to supercritical, depending on the parameter values (Theorem 6.2). As an aside,
a relatively old observation from the literature, based on numerical simulations, is confirmed
analytically [8, 34], namely that Hopf bifurcation associated with the pulse in the canonical
Gierer-Meinhardt equation is always subcritical (Corollary 6.3). To the author’s knowledge,
this is the first time that such a numerical result is verified analytically, in a systematic fashion.
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Moreover, the technical approach advocated in this paper, preferably combined with the use of
symbolic algebra software such as Mathematica [2], brings the weakly nonlinear analysis of
localised structures in reaction-diffusion systems within reach.

2 Preliminaries and prerequisites
In [11], a general theory for establishing the existence and stability of stationary single pulses
was presented in a general setting of a singularly perturbed, two component system of reaction-
diffusion equations on the real line, with asymptotically small parameter 0 < ε � 1. It was
shown that the most general context in which these pulse solutions could be constructed led to
the following system:{

Ut = Uxx − (µU − ν1F1(U; ε)) + ν2
ε

F2(U,V; ε)
Vt = ε2Vxx − V + G(U,V; ε) . (2.1)

System (2.1) is considered on the unbounded domain such that U,V : R × R>0 → R; moreover,
we restrict ourselves to positive solutions. A stable homogeneous trivial background state is
assumed. The range of the model parameters µ, ν1,2 and mild regularity assumptions on the
nonlinear reaction terms F1,2 and G are specified in (A1 - A4) of (upcoming) Assumptions 2.2.
In the following subsections 2.1 and 2.2, a very concise overview of the results obtained in [11]
is given. The necessary ingredients for establishing localised pulses and their eigenfunctions
are presented, in order to be able to set up the theory for a Hopf bifurcation of such a localised
pulse, which is the main subject of this paper. By nature, this overview is far from complete and
very brief: the reader is encouraged to consider [11] for a complete exposition.

2.1 Existence result on pulse solutions
The purpose of this subsection is to introduce the ingredients which are necessary to formulate
Result 2.3 for the existence of pulse solutions to (2.1). We refer the reader to [11] for the full
geometric analysis and corresponding Theorem 2.1 therein.

Introducing the ’fast’ (or short scale) coordinate ξ = x
ε
, (2.1) can be transformed into{

Ut = 1
ε2 Uξξ − (µU − ν1F1(U; ε)) + ν2

ε
F2(U,V; ε)

Vt = Vξξ − V + G(U,V; ε) . (2.2)

Establishing the existence of a stationary pulse solution to (2.2) (or equivalently (2.1)) which
is asymptotic to the (stable) trivial background state of (2.2) is equivalent to constructing a
homoclinic orbit in the associated ODE system

uξ =
√
εp

pξ =
√
ε (−ν2F2(u, v; ε) + ε (µu − ν1F1(u; ε)))

vξ = q
qξ = v −G(u, v; ε)

. (2.3)

The slow-fast structure present in the ODE system (2.3) leads to a scale separation between the
U- and V-components of the pulse. One can within the unbounded domain define an inner, ’fast’
region

I f =

[
−

1

ε
1
4

,
1

ε
1
4

]
, (2.4)

where the U-component of the pulse will be constant to leading order in ε, while outside I f the
V-component of the pulse will be exponentially small; see Figure 1 and Result 2.3.
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In order to formulate the existence result, we introduce the fast reduced system

v f ,ξξ = v f −G(u0, v f ; 0) or
{

v f ,ξ = q f

q f ,ξ = v f −G(u0, v f ; 0) , u0 > 0 constant, (2.5)

and the slow reduced system

us,xx = µus − ν1F1(us; ε), or
{

us,x = ps

ps,x = µus − ν1F1(us; ε) , u > 0. (2.6)

Moreover, we define

Dp(u0) =

∫ ∞

−∞

F2(u0, v f ,h(ξ; u0); 0) dξ, (2.7)

to formulate the ‘existence criterion’

µu2 − 2ν1

∫ u

0
F1(ũ; 0) dũ = 1

4ν
2
2 D2

p(u) = 1
4ν

2
2

[∫ ∞

−∞

F2(u, v f ,h(ξ; u); 0) dξ
]2

. (2.8)

In [11], it was shown that for each solution u∗ to (2.8) there exists a symmetric, stationary pulse
solution to (2.1)/(2.2).

We now state the assumptions on the model functions F1,2 and G, the model parameters
µ, ν1,2, the fast system (2.5) and the function Dp(u) (2.7); for the reasoning behind these assump-
tions, see [11]. Note that the Gray-Scott and Gierer-Meinhardt models are important, canonical
examples of systems obeying these assumptions; however, the full class of systems described in
this way is far more encompassing.

Definition 2.1. A statement of the form ‘ f (x) { c · g(x) as x → x0’ is true whenever the limit
limx→x0

1
g(x) f (x) = c exists and is well-defined.

Assumptions 2.2. The following is assumed to hold:

(A1) µ, ν1,2 are real and nonsingular in ε; furthermore, µ > 0.

(A2) F1(U; ε){ U f1 as U ↓ 0 for some f1 > 1;
F1 is smooth both on its domain and as a function of ε.

(A3) Writing F2(U,V; ε) = F2,1(U; ε) V + F2,2(U,V; ε),
F2,1(U; ε){ F̃2,1(ε) Uγ1 as U ↓ 0 for some γ1 ≥ 0 and F̃2,1(ε) ∈ R;
F2,2(U,V; ε){ F̃2,2,u(V; ε) Uα1 as U ↓ 0 for some α1 ∈ R;
F2,2(U,V; ε){ F̃2,2,v(U; ε) Vβ1 as V → 0 for some β1 > 1;
F2 is smooth both on its domain and as a function of ε.

(A4) G(U,V; ε){ G̃u(V; ε) Uα2 as U ↓ 0 for some α2 ∈ R;
G(U,V; ε){ G̃v(U; ε) Vβ2 as V → 0 for some β2 > 1;
G is smooth both on its domain and as a function of ε.

(A5) For all u0 > 0 there exists a positive solution v f ,h(ξ; u0) to (2.5) which is homoclinic to
(v f , q f ) = (0, 0).

(A6) Dp(u){ 1 · udp as u ↓ 0 for some dp ∈ R, c.f. (2.7).

The following Existence Result is a summary of Theorem 2.1 in [11]; see Figure 1 for an
illustration.

Result 2.3 (Existence and structure of pulse solutions). Assume that conditions 2.2 hold and
let ε > 0 be small enough. Let u∗ be a non-degenerate solution to (2.8). Then (2.2) admits a
stationary pulse solution Γh(ξ) = (Uh(ξ),Vh(ξ))T which is symmetric in ξ = 0. Furthermore,
there are O(1) constants C1,2 > 0 such that the following holds:
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Uh Vh

{ If x
0

Figure 1: A sketch of the stationary, symmetric pulse solution to (2.2), whose existence and
structure follows from Result 2.3. For clarity of presentation, the slow variable x = ε ξ (instead
of the fast variable ξ) is plotted on the horizontal axis.

• Γh(ξ) =

(
us,0(x∗ + εξ)

0

)
+ C1e−C2ξ for ξ > ε−

1
4 ;

• Γh(ξ) =

(
us,0(x∗ − εξ)

0

)
+ C1eC2ξ for ξ < −ε−

1
4 ;

• Γh(ξ) =

(
u∗

v f ,h(ξ; u∗)

)
+ O(ε

3
4 ) for ξ ∈ I f .

Here, v f ,h(ξ; u∗) is the homoclinic solution to (2.5) introduced in Assumptions 2.2, (A5); us,0 is
the (unique) solution to (2.6) which is forward asymptotic to the origin, i.e. limx→∞ us,0(x) = 0.
The coordinate x∗ is such that us,0(x∗) = u∗.

2.2 Pulse stability, linearisation and eigenfunctions
In order to set up an analysis of Hopf bifurcations of the localised pulses considered in the pre-
vious section, it is necessary to highlight some aspects of the stability analysis of such a pulse,
as carried out in [11], section 3. The main purpose of this subsection is to give a leading order
expression for the eigenfunctions associated to the stability problem of such a localised pulse,
summarised in Result 2.4. The exposition presented in this subsection is (again) very brief. The
full and detailed analysis can be found in [11], section 3.

In the following, assume that Result 2.3 holds. The stability analysis of the resulting pulse
Γh is closely related to the study of the linear operator

L(ξ; ε) =

(
ε−2 0
0 1

)
d2

dξ2 −A(ξ; ε), (2.9)

where

A(ξ; ε) =

(
µ − ν1

dF1
dU −

ν2
ε
∂F2
∂U −

ν2
ε
∂F2
∂V

− ∂G
∂U 1 − ∂G

∂V

)∣∣∣∣∣∣
(U,V)=(Uh(ξ),Vh(ξ))

. (2.10)

Since limξ→±∞ Γh(ξ) = (0, 0), the matrix A(ξ; ε) is asymptotically constant as ξ → ±∞, i.e.
limξ→±∞A(ξ; ε) = A∞(ε). The eigenvalues of this constant matrixA∞(ε) determine the essen-
tial spectrum σe of the operator L, which is given by

σe = {λ ∈ R : λ ≤ max (−µ,−1)} ⊂ C. (2.11)
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The slow-fast structure of the pulse Γh, made explicit in Result 2.3, is inherited by the linear
operator L; it has the obvious interpretation of being the linearisation of (2.2) around Γh. One
can therefore introduce the ’fast’ linear operator

L f (ξ) =
d2

dξ2 −

[
1 −

∂G
∂V

(u∗, v f ,h(ξ; u∗))
]
, ξ ∈ R, (2.12)

with u∗ and v f ,h as in Result 2.3, and determine its spectrum. The associated eigenvalue problem(
L f − λ

)
v = 0 is of Sturm-Liouville type; relevant results from the literature are summarised

in [11], Lemma 3.2. Based on those results, let λ f , j, j ∈ Z≥0 be the eigenvalues of the linear
operator L f acting on the space of bounded integrable functions on the entire real line.
Similarly, the ’slow’ linear operator

Ls(x) =
d2

dx2 −

[
µ − ν1

∂F1

∂U
(us,0(x∗ + x))

]
, x ≥ 0, (2.13)

with us,0 as in Result 2.3, plays a central role in the spectral analysis of L. The eigenvalue
problem (Ls − λ) u = 0 is again of Sturm-Liouville type, albeit on the positive halfline. Let
us,−(x; λ) be the solution to the eigenvalue problem Lsu = λ u that is bounded as x → ∞, such
that us,−(x; λ){ 1 · e−

√
µ+λ x as x→ ∞.

The coupling between the U- and V-components of the pulse (apparent in the off-diagonal
entries ofA) manifests itself in the spectral analysis ofL through the nonhomogeneous problem(

L f − λ
)

v = −
∂G
∂U

(u∗, v f ,h(ξ; u∗)), ξ ∈ R. (2.14)

For λ , λ f , j and λ < σe, let vin(ξ; λ) be the unique bounded solution to (2.14). The exist-
ence and uniqueness of vin follows from the analysis in [11], section 3, which is based on the
Fredholm alternative. Note that it immediately follows that vin is even as a function of ξ, i.e.
vin(ξ; λ) = vin(−ξ; λ).

The actual spectral analysis ofL (2.9) does not need to be summarised here: for an overview
of this spectral analysis, using an Evans function approach, see [11], sections 4 and 5. There,
a leading order expression for the Evans function was derived ([11], Theorem 4.4), enabling
direct calculation of the pulse eigenvalues. The most relevant result for the current paper how-
ever is Corollary 5.10 therein; it was shown that the most general destabilisation scenario for a
localised pulse in (2.2) is through a Hopf bifurcation. That observation will be the starting point
of the analysis presented in this paper. However, some comments on the trivial eigenvalue are
in order; they can be found in the next section, section 2.3.

The following Result, which summarises results from section 4 in [11], characterises the
leading order behaviour of eigenfunctions of the linear operator L (2.9). This leading order
behaviour will be very instrumental in the upcoming analysis.

Result 2.4 (Existence and structure of eigenfunctions). Let ε > 0 be small enough. Assume
that λ < σe and λ , λ f , j. If there is a λ ∈ C for which there is a bounded integrable function
φ : R → C2 such that L(ξ; ε) φ(ξ; λ, ε) = λ φ(ξ; λ, ε), then φ(ξ; λ, ε) is unique. Furthermore,
there are O(1) constants C1,2 such that the following holds:

• φ(ξ; λ, ε) =

(
us,−(εξ; λ)

0

)
+ C1e−|C2 |ξ for ξ > ε−

1
4 ;

• φ(ξ; λ, ε) = φ(−ξ; λ, ε) for ξ < −ε−
1
4 ;
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Figure 2: A sketch of a possible eigenfunction φ of L(ξ, ε) (2.9) whose structure is described in
Result 2.4. Note that the eigenfunction inherits the scale separated structure from the stationary
pulse, c.f. Figure 1. The first (slow) resp. second (fast) component of the eigenfunction φ are
indicated by (φ)1 resp. (φ)2. For clarity of presentation, the slow variable x = ε ξ (instead of the
fast variable ξ) is plotted on the horizontal axis.

• φ(ξ; λ, ε) = us,−(0; λ)
(

1
vin(ξ; λ)

)
+ O(ε

3
4 ) for ξ ∈ I f .

The leading order expressions for the eigenfunction of L are based on the proof of Theorem 4.4
in [11].

2.3 Translational symmetry and the trivial eigenvalue
This subsection focuses on the well-known fact that the trivial eigenvalue λ = 0 is always part
of the spectrum of a localised structure. This has some implications for the centre manifold ana-
lysis in the upcoming section 3. To treat and separate the contribution of the trivial eigenmode
to the centre manifold in a systematic fashion, some concepts and symbols are introduced the
current subsection, for later use.

A general n-component reaction-diffusion equation

ũt = Dũxx + f (ũ), ũ ∈ Rn, D ∈ Mat(n,R), f : Rn → Rn (2.15)

is equivariant under the continuous one-parameter group of isometries (Tα)α∈R which acts as

Tαũ(x) = ũ(x + α). (2.16)

Every stationary solution ũ0 to (2.15), for which

Dũ0,xx + f (ũ0) = 0, (2.17)

can therefore be thought of as representing a continuous family of stationary solutions (Tαũ0)α∈R,
obtained under the group action Tα. Since the infinitesimal generator of this underlying transla-
tional symmetry group (2.16) is τ = ∂

∂x , it follows from (2.17) that τũ0 = ũ0,x obeys the linear
equation [

D
∂2

∂x2 +
d f
dũ

(ũ0)
]
τũ0 = 0. (2.18)
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The above considerations apply to the PDE system (2.1)/(2.2); in particular, for the homoclinic
pulse solution whose existence was established in Result 2.3. In this context, (2.18) takes the
form

L
d
dξ

Γh = 0,

from which follows that λ = 0 is always an eigenvalue of the operator L (2.9), with eigenfunc-
tion d

dξΓh. Note that Result 2.4 does not apply for this eigenvalue, since λ f ,1 = 0. The fact that
indeed λ f ,1 = 0 can be found in [11]; also, the above argument can be applied to (2.5) with its
linearisation (2.12) around the orbit v f ,h, Assumptions 2.2 (A5). However, the eigenfunction
d
dξΓh does exhibit the same scale separated structure as the eigenfunctions described in Result
2.4, see Result 2.3 for the structure of Γh. Both considerations will be of importance in the next
section, where a centre manifold analysis will be set up.

3 The Hopf centre manifold
In this paper, we focus on the situation where the pulse Γh undergoes a Hopf bifurcation. In
other words, let (µ, ν1, ν2) = (µH , ν1,H , ν2,H) be such that there is a bounded integrable function
φH : R→ C2 as in Result 2.4 for which

L φH = iωHφH , (3.1)

with ωH > 0. Since the operator L is real, it immediately follows that the Hopf bifurcation
(3.1) yields a complex conjugate pair of eigenvalues ±iωH with associated eigenfunction pair{
φH , φH

}
– here and henceforth, complex conjugation will be denoted by an overline.

Since the linear operator L (2.9) is sectorial and its continuous spectrum is completely de-
termined by the essential spectrum σe (2.11), we can infer that its central spectrum

σ0 =
{
λ ∈ C : λ is in the spectrum of L, Re(λ) = 0

}
consists of finitely many eigenvalues. Moreover, λ = 0 ∈ σ0 (see subsection 2.3); we assume
that this trivial eigenvalue is nondegenerate. As mentioned before, it was argued in [11] that
this is the most general destabilisation scenario for a given pulse whose existence is ensured by
Result 2.3. Indeed, this destabilisation through a Hopf bifurcation is typical for pulses in both
the Gierer-Meinhardt equation [6] and its slowly nonlinear counterpart, see [32], sections 4 and
5.
Henceforth, we assume ±iωH are the only nontrivial central eigenvalues, i.e. that the central
spectrum of L is given by

σ0,H = {±iωH , 0} . (3.2)

Moreover, based our insight in the general pulse destabilisation mechanisms from [11], we as-
sume that the Hopf bifurcation under consideration is of codimension 1, such that the Hopf
eigenvalues are simple.

To carry out a centre manifold analysis for this central spectrum, one would naively aim for
an expansion in the three associated eigenvectors. However, the translational symmetry (2.16)
of (2.1)/(2.2), being the source of the trivial central eigenvalue λ = 0, induces a transversal
structure for the centre manifold, enabling one to effectively ignore the translational eigenmode
in the local centre manifold expansion (see upcoming Theorem 3.3). To set the stage, we first
focus on the ambient function space where the centre manifold will be embedded in.
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3.1 Choosing a function space
In order to properly set up the centre manifold theory for the pulse Γh at the Hopf bifurcation
(3.1), we need choose an appropriate function space to work in. To accommodate for the fact
that we want to make use of the leading order expressions of the constituents, like φH , which
will have a scale separated structure, we search for an inner product which behaves ‘nicely’
under the limit ε ↓ 0. To that end, we introduce the function space

X = L2(R,C2; µε) (3.3)

with the partly scaled Lebesgue measure µε defined such that the associated inner product 〈·, ·〉
can be defined as

〈φ, ψ〉 =

∫
R

φT S ψ dξ with S =

(
ε 0
0 1

)
(3.4)

for φ, ψ ∈ X. In other words: the product of the first components is integrated over the large
scale variable x = εξ, the product of the second components over the small scale variable ξ.
Note that the norm induced by the inner product (3.4) is for all ε > 0 equivalent to the ‘stand-
ard’ norm on (L2(R,C))2, making X and (L2(R,C))2 isometrically isomorphic as metric spaces.
A similar norm was introduced in [9].

3.2 Foliation of the centre manifold along the translational eigenmode
In this section, we show that the influence of the translational eigenmode can be separated com-
pletely from the other eigendirections. We follow the general approach in [20], section 2.3.3
therein. A similar treatment can be found in [23], which is partly based on the general theory
developed in [24]. The choice to follow [20] in the current paper is solely for notational pur-
poses.

To make full use of the translational symmetry of (2.2), we choose local tubular coordinates
to separate the perturbation of the stationary pulse solution Γh into a perturbation along resp.
perpendicular to the orbits of the translation group (Tα)α∈R, as follows:(

U(ξ, t)
V(ξ, t)

)
= Γ(ξ, t) = Tα(t) (Γh(ξ) + ρ(ξ, t)) , (3.5)

where
〈ρ,

d
dξ

Γh〉 = 0. (3.6)

In the tubular coordinates (3.5), the left-hand side of (2.2) yields(
Ut

Vt

)
=
∂

∂t
Γ =

dα
dt

Tα(t)

(
d
dξ

Γh(ξ) +
∂

∂ξ
ρ(ξ, t)

)
+ Tα(t)

∂

∂t
ρ(ξ, t); (3.7)

(left) multiplication with T−α(t) gives

T−α(t)

(
Ut

Vt

)
=

dα
dt

(
d
dξ

Γh(ξ) +
∂

∂ξ
ρ(ξ, t)

)
+
∂

∂t
ρ(ξ, t). (3.8)

Since the right-hand side of (2.2) is equivariant under the translation Tα(t), using the tubular
coordinates (3.5) in the right-hand side of (2.2) and subsequent (left) multiplication with the
inverse translation T−α(t) is equivalent to substitution of Γh(ξ) + ρ(ξ, t):

T−α(t)

(
Ut

Vt

)
= RHS(Γh(ξ) + ρ(ξ, t)) (3.9)
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with

RHS
(
(U,V)T

)
=

( 1
ε2 Uξξ − (µU − ν1F1(U; ε)) + ν2

ε
F2(U,V; ε)

Vξξ − V + G(U,V; ε)

)
. (3.10)

Based on the orthogonality condition (3.6), we can project both sides of (3.9) onto the sub-
space spanned by d

dξΓh to obtain separate dynamical equations for dα
dt and ∂

∂tρ(ξ, t), using (3.8).
Introducing the projection

Π0 =
〈·, d

dξΓh〉

〈 d
dξΓh,

d
dξΓh〉

d
dξ

Γh, (3.11)

we see that projecting (3.8) onto the subspace spanned by d
dξΓh yields

Π0 T−α(t)

(
Ut

Vt

)
=

dα
dt

1 +
〈 ∂
∂ξ
ρ, d

dξΓh〉

〈 d
dξΓh,

d
dξΓh〉

 d
dξ

Γh. (3.12)

Combining this with the projection of (3.9) onto the same subspace, we can express dα
dt as

dα
dt

=
〈RHS(Γh(ξ) + ρ(ξ, t)), d

dξΓh〉

〈 d
dξΓh,

d
dξΓh〉 + 〈

∂
∂ξ
ρ, d

dξΓh〉
. (3.13)

Note that (3.13) does not depend explicitly on α(t): this is a direct consequence of the equivari-
ance of (2.2) under the translation group (Tα)α∈R.
The projection onto the orthogonal complement of the subspace spanned by d

dξΓh, given by
I−Π0, can be used to obtain a dynamical equation for ρ(ξ, t). Applying I−Π0 on (3.9) and using
(3.13) yields

∂

∂t
ρ(ξ, t) = (I − Π0) RHS(Γh(ξ) + ρ(ξ, t)) −

dα
dt

(I − Π0)
∂

∂ξ
ρ (3.14)

= RHS(Γh(ξ) + ρ(ξ, t)) −
(

d
dξ

Γh +
∂

∂ξ
ρ

)
〈RHS(Γh(ξ) + ρ(ξ, t)), d

dξΓh〉

〈 d
dξΓh + ∂

∂ξ
ρ, d

dξΓh〉
.

The decoupling of the translational perturbation parametrised by α(t) and the ‘orthogonal’ per-
turbation ρ(ξ, t) is made rigorous in the following theorem. It is an adaptation of Theorem 3.19
from chapter 2 in [20], reformulated to suit the context of this article:

Theorem 3.1 (Centre manifolds in presence of continuous symmetry). Let X = Π0X⊕X
′ =

span
{

d
dξΓh

}
⊕ X′, L′ = (I − Π0)L and let σ′0 be the central spectrum of L′. Assume that σ′0 is

finite, and let E′0 ⊂ X
′ be the associated spectral subspace. LetU′ ⊂ X′ be a neighbourhood of

the origin in X′. Consider the tubular neighbourhood

U =
{
Tα(Γh + ρ); ρ ∈ U′, α ∈ R

}
⊂ X

of the line of equilibria {Tα Γh, α ∈ R}.
There exists a map Ψ which has the same degree of smoothness as the right-hand side of (2.2),
Ψ : E′0 → X

′ − E′0, with Ψ(0) = 0, DΨ(0) = 0 such that the manifold

M0 =
{
Tα (Γh + ρ0 + Ψ(ρ0)) ; ρ0 ∈ E

′
0, α ∈ R

}
⊂ X

has the following properties:

1. The manifoldM0 is locally invariant under (2.2), in other words, if Γ(ξ, t) = (U(ξ, t),V(ξ, t))T

is a solution of (2.2) satisfying Γ(ξ, 0) ∈ M0 ∩ U and Γ(ξ, t) ∈ U for all t ∈ [0,T ], then
Γ(ξ, t) ∈ M0 for all t ∈ [0,T ].
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2. M0 contains the set of solutions of (2.2) staying inU for all t > 0, in other words, if Γ is
a solution of (2.2) satisfying Γ(ξ, t) ∈ U for all t > 0, then Γ(ξ, 0) ∈ M0.

The solutions to (2.2) which stay close to the line of equilibria for all t > 0 are of the form (3.5),
with α(t) satisfying (3.13) and ρ(ξ, t) satisfying (3.14).

Up to this point, our analysis only used the translational equivariance of (2.2). It will become
clear that the results on the (specific form of) the eigenfunctions of L (2.9) as stated in Result
2.4 will enable us to drastically simplify the dynamical equation for α(t), as given in (3.13). The
following observation will be important enough in the following to state it as a Lemma:

Lemma 3.2. Let the conditions of Result 2.4 be fulfilled, and let λ be an eigenvalue of L with
eigenfunction φ(ξ; λ, ε). Then

〈φ,
d
dξ

Γh〉 = 0. (3.15)

Proof. Since the stationary pulse solution Γh is symmetric, it is even as a function of ξ, see
Result 2.3. Therefore d

dξΓh is odd as a function of ξ. Now, from the definition of L (2.9) it
is clear that L(ξ) is invariant under reflection: L(−ξ) = L(ξ). This means that, if φ(ξ; λ, ε) is
an eigenfunction of L with eigenvalue λ, then φ(−ξ; λ, ε) must also be an eigenfunction of L
for that same eigenvalue (note that λ , 0); furthermore, φ(−ξ; λ, ε) is also bounded. Since the
eigenfunction φ(ξ; λ, ε) is unique (see Result 2.4), it follows that φ(−ξ; λ, ε) = φ(ξ; λ, ε). From
the observation that the product of an even function and an odd function is odd, and that the
integral of an odd function vanishes identically, the statement (3.15) follows from the definition
of the inner product (3.4). �

Based on the above results (which in particular hold for the nonzero eigenvalues in our
codimension 1 central spectrum (3.2)), we can formulate a theorem on the local structure of
the centre manifold associated to the Hopf bifurcation (3.1) and the associated central spectrum
(3.2).

Theorem 3.3. Let the central spectrum of L be given by (3.2). The associated centre manifold
M0,H can be foliated along the line of equilibria {Tα Γh, α ∈ R}, and has a locally trivial product
structure:

M0,H = R ×M′0,H .

The dynamics along the translational direction are trivial: equation (3.13) simplifies to dα
dt = 0.

The full dynamics onM0,H can be represented by the reduced dynamics onM′0,H , given by

∂

∂t
ρ(ξ, t) = RHS(Γh(ξ) + ρ(ξ, t)). (3.16)

Theorem 3.3 on the foliation of a Hopf centre manifold along the direction spanned by the
translational eigenmode is a quite well-known result; it was proven in [23] for front solutions
(see Theorem 1 and Corollary 1 therein); more general theory on symmetry and centre manifolds
was developed in [24]. However, the immobility of the symmetric pulse –more widely known
as the ‘pulse pinning’ phenomenon– has to the author’s knowledge not been considered in this
framework, being a direct consequence of the translational invariance of the underlying system
combined with the spatial symmetry of the pulse solution. For an illustration of the statement
of Theorem 3.3, see Figure 3.

Proof. We adopt the notation of Theorem 3.1. For the central spectrum (3.2), the reduced
spectral subspace E′0 is spanned by the eigenvectors of the Hopf eigenvalues ±iωH , i.e. E′0 =

span
{
φH , φH

}
. Therefore, any ρ0(ξ, t) ∈ E′0 can be written as ρ0(ξ, t) = A(t) φH(ξ) + A(t) φH(ξ).

Since φH is even as a function of ξ (see the proof of Lemma 3.2), ρ0 is even as a function
of ξ; in extension, Ψ(ρ0) is even as a function of ξ. The pulse Γh is symmetric (Result 2.3),

11



Figure 3: A sketch of the statement of Theorem 3.3 on the foliation of the Hopf centre manifold
M0,H . The identical copies of M′0,H are depicted as green sheets, while the trivial ‘stacking’
direction spanned by the line of equilibria {Tα Γh, α ∈ R} is upwards.

so Γh(ξ) + ρ(ξ, t) = Γh(ξ) + ρ0(ξ, t) + Ψ(ρ0(ξ, t)) is even as a function of ξ. That means
that RHS(Γh(ξ) + ρ(ξ, t)) (3.10) is even as a function of ξ. Subsequently, the inner product
〈RHS(Γh(ξ) + ρ(ξ, t)), d

dξΓh〉 vanishes identically, since the translational eigenmode d
dξΓh is odd

in ξ, see the proof of Lemma 3.2. Hence, the right-hand side of (3.13) vanishes. That means that
the full dynamics onM0,H are represented by (3.14), which in turn can be reduced to (3.16). �

Although one would expect, based on the central spectrum (3.2), that the translational ei-
genmode d

dξΓh in general is excitable, Theorem 3.3 shows that this is not the case. In other
words, the pulse Γh does not move when perturbed under Hopf bifurcation conditions. Theorem
3.3 therefore enables us to ‘neglect’ the translational eigenmode in the centre manifold expan-
sion. Moreover, this Theorem analytically confirms the numerical results on the ‘pinning’ of a
periodically oscillating pulse in [32], section 5.

4 Expanding the Hopf centre manifold
In this section, we expand the Hopf centre manifold introduced in section 3. Our analysis is
based on the approach taken in [20], section 3.4.2 therein.
Based on Theorem 3.1 and Theorem 3.3, we restrict ourselves without loss of generality to
X′ = X− span

{
d
dξΓh

}
, i.e. we focus on a single leaf of the foliation of the entire centre manifold.

As in the proof of Theorem 3.3, we observe that E′0 = span
{
φH , φH

}
. Therefore, any ρ0(ξ, t) ∈ E′0

can be expressed as ρ0(ξ, t) = A(t) φH(ξ)+A(t) φH(ξ). We recall from Theorem 3.1 and Theorem
3.3 that solutions on the centre manifold leafM′0,H can be expressed as(

U(ξ, t)
V(ξ, t)

)
= Γ(ξ, t) = Γh(ξ) + A(t) φH(ξ) + A(t) φH(ξ) + Ψ

(
A(t) φH(ξ) + A(t) φH(ξ)

)
. (4.1)

Since our ultimate goal is to make a statement about the (weakly) nonlinear stability of the
stationary pulse solution of Result 2.3, we choose to take the explicit parameter dependence

12



of (2.2) into account. That way, we can analyse what will happen when a continuous para-
meter change moves the pulse solution through a Hopf bifurcation, such that the pulse becomes
linearly unstable. We take µ as our principal bifurcation parameter; however, the analysis is
completely analogous when either ν1 or ν2 is chosen as bifurcation parameter.
With the parameter dependence taken into account, the parameter dependent normal form for a
Hopf bifurcation is given by [20]

dA
dt

= iωH A + a µ̂ A + b A |A|2 + O
(
A(|µ̂| + |A|2)2

)
, (4.2)

where µ̂ = µ − µH . To obtain an equation for the normal form coefficients a and b, we need to
make a formal expansion of both the local graph of the centre manifold, given by Φ (4.1), and
the right-hand side of (2.2) for a perturbation of the pulse solution Γh. To start with the latter,
we substitute (U,V) = Γh + ρ in (2.2), yielding

∂ρ

∂t
= L′ρ + R(Γh; ρ). (4.3)

with L′ denotes the projection of L (2.9) onto the subspace X′, see Theorem 3.1. Next, we
formally expand the remainder term R(Γh; ρ) as

R(Γh; ρ) = µ̂Rµ̂ + µ̂R
µ̂
1ρ + R2(ρ, ρ) + R3(ρ, ρ, ρ) + O

(
|µ̂|(|µ̂| + |ρ|2)

)
+ O

(
|ρ|4

)
. (4.4)

Note that not every term in the expansion is given explicitly: the terms omitted are not needed
for the calculation of the normal form coefficients a and b (4.2). The expansion terms of in (4.4)
can be calculated straightforwardly from the Taylor series of their constituents, yielding

Rµ̂ =

(
ν1

dF1
dU + ν2

ε
∂F2
∂U

ν2
ε
∂F2
∂V

∂G
∂U

∂G
∂V

)
∂Γh

∂µ
, (4.5a)

R
µ̂
1 ρ =

ν1
d2F1
dU2 (ρ)1

∂Uh
∂µ

0

 +

 ν2
ε

D2F2(ρ, ∂Γh
∂µ

)
D2G(ρ, ∂Γh

∂µ
)

 , (4.5b)

R2(ρ, σ) =

(
ν1

d2F1
dU2 (ρ)1(σ)1

0

)
+

(
ν2
ε

D2F2(ρ, σ)
D2G(ρ, σ)

)
, (4.5c)

R3(ρ, σ, τ) =

(
ν1

d3F1
dU3 (ρ)1(σ)1(τ)1

0

)
+

(
ν2
ε

D3F2(ρ, σ, τ)
D3G(ρ, σ, τ)

)
. (4.5d)

Here, D2H(ρ, σ) denotes the symmetric 2-tensor obtained by taking the (total) second derivative
of the function H : R×R→ R, where the tensor acts on the pair of vectors (ρ, σ). Equivalently,
D3H(ρ, σ) denotes the symmetric 3-tensor obtained by taking the (total) third derivative of H,
acting on the vector triplet (ρ, σ, τ). In (4.5), all the (partial) derivatives of F1,2 and G are eval-
uated at the pulse solution Γh = (Uh,Vh)T (as in (2.10)). Also, the first resp. second component
of a vector ρ is denoted by (ρ)1 resp. (ρ)2.
Now, using the local functional form of the centre manifold (4.1), we specify ρ as

ρ = A(t) φH(ξ) + A(t) φH(ξ) + Ψ
(
A(t) φH(ξ) + A(t) φH(ξ)

)
. (4.6)

Next, we expand Ψ
(
A(t) φH(ξ) + A(t) φH(ξ)

)
in a power series in µ̂ and A, A as

Ψ
(
A(t) φH(ξ) + A(t) φH(ξ)

)
= A2Ψ20 + A AΨ11 + A

2
Ψ20

+A3Ψ30 + A2AΨ21 + A A
2
Ψ21 + A

3
Ψ30 + O

(
|A|4

)
+µ̂Ψ

µ̂
00 + µ̂AΨ

µ̂
10 + µ̂A Ψ

µ̂
10 + O

(
|µ̂|(|µ̂| + |A|2)

)
. (4.7)

13



Combining (4.7) with (4.6) and substituting the result in (4.3), one can use (4.4) and the normal
form (4.2)to identify the expansion terms by increasing order. This procedure yields for the first
and nonmixed second order terms

O (µ̂) : L′Ψ
µ̂
00 = −Rµ̂, (4.8a)

O
(
A2

)
:

(
L′ − 2 iωH

)
Ψ20 = −R2(φH , φH), (4.8b)

O
(
AA

)
: L′Ψ11 = −2R2(φH , φH). (4.8c)

Note that, since we have restricted our analysis to one leaf of the foliation given in Theorem 3.3,
and hence work in the space X′, which is the complement of the span of the trivial eigenmode
d
dξΓh, we see that the operator L′ is invertible in this subspace and hence both Ψ

µ̂
00 and Ψ11 are

uniquely determined by (4.8a) resp. (4.8c). Moreover, since we assumed the central spectrum
of L to be given by (3.2), we see that

σ′0,H = {±iωH} . (4.9)

Therefore, the operator (L′ − 2 iωH) is invertible as well, thereby uniquely determining Ψ20 by
(4.8b).
Returning to the results of the substitution procedure, identification of the the third order and
mixed second order terms yields

O (µ̂A) :
(
L′ − iωH

)
Ψ
µ̂
10 = a φH − R

µ̂
1φH − 2R2

(
φH ,Ψ

µ̂
00

)
, (4.10a)

O
(
A|A|2

)
:

(
L′ − iωH

)
Ψ21 = b φH − 2R2 (φH ,Ψ11) − 2R2

(
φH ,Ψ20

)
− 3R3

(
φH , φH , φH

)
(4.10b)

Since we assume the Hopf eigenvalues ±iωH to be simple, such that the Hopf bifurcation has
codimension 1, the equations for Ψ

µ̂
10 and Ψ21 can be solved if and only if the appropriate solv-

ability condition is satisfied. In both cases, the solvability condition demands that the right-hand
sides of (4.10a) and (4.10b) are orthogonal to the kernel of the adjoint operator (L′∗ + iωH). The
kernel of the adjoint (L′∗ + iωH) is also one-dimensional, and L′∗ is real, so we can introduce
the eigenfunction φ∗H for which

L′∗φ′∗H = iωH φ
′∗
H . (4.11)

The solvability condition for (4.10a) and (4.10b) then yields the following equations for a and
b:

a =
〈R

µ̂
1φH + 2R2

(
φH ,Ψ

µ̂
00

)
, φ′∗H〉

〈φH , φ
′∗
H〉

, (4.12)

b =
〈2R2 (φH ,Ψ11) + 2R2

(
φH ,Ψ20

)
+ 3R3

(
φH , φH , φH

)
, φ′∗H〉

〈φH , φ
′∗
H〉

. (4.13)

In the next section, the constituents of (4.12) and (4.13) will be treated in more detail.

It is worthwhile to note that the theory presented in section 3 and 4 is nonperturbative in
the small parameter ε. The mere fact that, for ε small enough, the existence of a pulse solution
to (2.2) can be proven, only provides the necessary input for the setup of the centre manifold
theory of sections 3 and 4. The next section will see the return of the leading order expressions
for the pulse and its eigenfunctions, as established in Results 2.3 and 2.4.
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5 Using the scale separated pulse structure
In this section, the different ingredients needed to calculate the Hopf normal form coefficents a
(4.12) and b (4.13) will be treated in a systematic fashion. The scale separated structure of the
underlying system (2.2), of the pulse solution (Result 2.3) and the Hopf eigenfunctions (Result
2.4) will prove instrumental in obtaining explicit leading order expressions for a and b.

5.1 The adjoint eigenfunction φ′∗H
To obtain a leading order expression for the adjoint eigenfunction φ′∗H , we study the adjoint
operator L′∗.
Combining the definition of L (2.9) with that of the scaling matrix S used in the definition of
the inner product (3.4), we see that L can be written as

L = S −2 d2

dξ2 −A. (5.1)

Now,

〈φ,L∗ψ〉 = 〈Lφ, ψ〉 =

∫
R

(Lφ)T Sψ dξ

=

∫
R

(
S −2 d2

dξ2 φ

)T

Sψ − (Aφ)T Sψ dξ

=

∫
R

(
d2

dξ2 φ

)T

S −2Sψ − φTAT Sψ dξ

=

∫
R

φT S −2S
d2

dξ2ψ − φ
T S S −1AT Sψ dξ (see Remark 5.2)

=

∫
R

φT S
[
S −2 d2

dξ2 − S −1AT S
]
ψ dξ,

so

L∗ = S −2 d2

dξ2 − S −1AT S . (5.2)

Using (2.10),

S −1AT S =

(
µ − ν1

dF1
dU −

ν2
ε
∂F2
∂U − 1

ε
∂G
∂U

−ν2
∂F2
∂V 1 − ∂G

∂V

)∣∣∣∣∣∣
(U,V)=(Uh(ξ),Vh(ξ))

. (5.3)

We see that L∗ has the same scale separated structure as L, with only the roles of ν2
∂F2
∂V and

∂G
∂U reversed. Therefore, Result 2.4 applies to eigenfunctions of L∗, in a slightly updated form.
Since the diagonal entries of A are the same as those of S −1AT S , the leading order slow and
fast linear operators associated to L∗ coincide with those of L, i.e. (L∗)s (x) = Ls(x) and
(L∗) f (ξ) = L f (ξ), as given in (2.13) resp. (2.12). The leading order fast nonhomogeneous
Sturm-Liouville problem for L∗ (compare (2.14)) is(

L∗f − λ
)

v = −ν2
∂F2

∂V
(u∗, v f ,h(ξ; u∗)), ξ ∈ R. (5.4)

Analogous to section 2.2, we denote the unique bounded solution to (5.4) by v∗in(ξ; λ). Using
these observations, we state the existence and leading order structure of φ′∗H in a manner similar
to Result 2.4:

Lemma 5.1. Let L′∗ be the adjoint of L′, as defined in Theorem 3.1. There exists a unique,
bounded, integrable function φ′∗H : R → C2 such that L′∗(ξ; ε) φ′∗H(ξ; ε) = iωH φ

′∗
H(ξ; ε). Fur-

thermore, there are O(1) constants C1,2 such that the following holds:
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• φ′∗H(ξ; ε) = φH(ξ; ε) + C1e−|C2 |ξ for ξ > ε−
1
4 ;

• φ′∗H(ξ; ε) = φ′∗H(−ξ; ε) for ξ < −ε−
1
4 ;

• φ′∗H(ξ; ε) = us,−(0; iωH)
(

1
v∗in(ξ; iωH)

)
+ O(ε

3
4 ) for ξ ∈ I f .

Here, v∗in(ξ; iωH) is the unique bounded solution to (5.4) for λ = iωH , and us,− is as in Result
2.4.

Proof. Since F2 and G obey equivalent conditions, see Assumptions 2.2, (A3) and (A4), the
theory developed in [11], section 3 can be directly applied to L∗, yielding Hopf eigenfunctions
φ∗H , φ∗H with the scale separated structure as described in Result 2.4. Outside I f , the leading
order behaviour of φ∗H coincides with that of φH , since (L∗)s (x) = Ls(x). Moreover, since φ∗H
is an even function, we can invoke Lemma 3.2 to conclude that φ∗H ∈ X

′. Therefore, φ∗H is also
the eigenfunction of the reduced adjoint operator L′∗ for the eigenvalue iωH , allowing us to
identify φ∗H = φ′∗H . �

Remark 5.2. In the derivation of L∗ (5.2), we used partial integration to ‘transfer’ the differen-
tial operator d2

dξ2 from φ to ψ. Since every function φ we consider in this paper is exponentially
decreasing as ξ → ±∞ and sufficiently smooth, this operation is justified in the present context.
However, this is not necessarily true for every function in the function space X (3.3). We there-
fore implicitly restrict ourselves to the subset of X where the adjoint of L can be identified with
the expression given in (5.2). One could also opt for finding a more suitable, restricted function
space to work in. However, this falls beyond the scope of this paper.

5.2 Solving inhomogeneous equations involving L′

We first derive a general result on solving equations of the following form:

(
L′ − κ

)
ψ =

(
A(εξ) + 1

ε
B((εξ, ξ)

C(εξ, ξ)

)
, (5.5)

where A, B,C are exponentially decreasing as their argument tends to ±∞, i.e.

∃CA
1,2,3,4 ∈ R :

{
A(x){ CA

1 e−|C
A
2 |x as x→ ∞

A(x){ CA
3 e|C

A
4 |x as x→ −∞

,

∃CB
1,2,3,4 ∈ R :

{
B(εξ, ξ){ CB

1 e−|C
B
2 |ξ as ξ → ∞

B(εξ, ξ){ CB
3 e|C

B
4 |ξ as ξ → −∞

,

and analogously for C(εξ, ξ).

For the moment, consider (5.5) extended to X, i.e. with L replacing L′. Using the definition
of L (2.9), this extended equation for ψ = (u, v)T is then[(

ε−2 0
0 1

)
d2

dξ2 − (κ +A(ξ; ε))
] (

u
v

)
=

(
A(εξ) + 1

ε
B((εξ, ξ)

C(εξ, ξ)

)
(5.6)

In [11], the scale separated structure of the homogeneous version of (5.6) was used to obtain
Sturm-Liouville type equations for the components u and v, see also section 2.2. The same
line of reasoning can be straightforwardly applied to (5.6). For more information on the order
estimates and detailed arguments on the validity of the approach, the reader is referred to[11].
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5.2.1 Equation (5.6) on the fast interval I f

Using leading order analysis analogous to that in [11], we see that on the fast interval I f (2.4),

u = u(0) + O
(
ε

3
4

)
for ξ ∈ I f , (5.7)

d2

dξ2 v −
[
1 + κ −

∂G
∂V

]
v = −

∂G
∂U

u(0) + C(0, ξ) + O
(
ε

3
4

)
, (5.8)

where the partial dervatives of G are, as usual, evaluated at (U,V) = (Uh,Vh) = (u∗, v f ,h(ξ; u∗))+

O
(
ε

3
4

)
on I f , see Result 2.3. We want to solve the inhomogeneous Sturm-Liouville equation

(5.8) on R with boundary conditions limξ→±∞ v(ξ) = 0, using its homogeneous version

d2

dξ2 v −
[
1 + κ −

∂G
∂V

]
v = 0, lim

ξ→±∞
v(ξ) = 0. (5.9)

Note that (5.9) can be phrased in terms of L f (ξ) (2.12) as
(
L f (ξ) − κ

)
v = 0. Detailed analysis

of this fast reduced eigenvalue problem and information on its spectrum can be found in [11].

In this paper, we consider two cases:

a) Equation (5.9) admits no nontrivial solution. By the Fredholm alternative, (5.8) has a
unique bounded solution v̂(ξ). Since ∂G

∂V vanishes as ξ → ±∞, we can find two linearly indepen-
dent solutions vL/R(ξ) to (5.9) for which vL(ξ) { ĉLe

√
1+κ ξ as ξ → −∞ and vR(ξ) { ĉRe−

√
1+κ ξ

as ξ → −∞ (see also Lemma 3.2 in [11]). Using variation of parameters (or using Green’s
function), we can express v̂ in terms of vL/R as

v̂(ξ) = vR(ξ)
∫ ξ

−∞

vL(ξ̂)
[
∂G
∂U

u(0) −C(0, ξ̂)
]

dξ̂ + vL(ξ)
∫ ∞

ξ

vR(ξ̂)
[
∂G
∂U

u(0) −C(0, ξ̂)
]

dξ̂, (5.10a)

:= u(0) v̂1(ξ) + v̂2(ξ) (5.10b)

where vL/R are normed such that the Wronskian W(vR, vL) = 1.

b) The parameter κ is zero. In this case, the function v1(ξ) = d
dξ v f ,h(ξ; u∗) solves the ho-

mogeneous problem (5.9). The other (unbounded) solution v2(ξ) to equation (5.9) would then
formally be given by

v1(ξ)
∫ ξ 1

v1(ξ̂)2
dξ̂.

One could regard the integral as an antiderivative, which, in some applications, might be calcu-
lated directly. Otherwise, this integral is ill-defined whatever the choice of lower limit, since the
integrand diverges as ξ̂ → 0. Note that the total expression, being the product of v1(ξ) and the
singular integral, is smooth at the origin.
Since the singularity of the integrand at the origin prevents us from ‘integrating through’ the
origin, we choose to define the unbounded solution to (5.9) as

v2(ξ; a) =

 v1(ξ)
∫ ξ

−a
1

v1(ξ̂)2 dξ̂ for ξ < 0,

−v1(ξ)
∫ a
ξ

1
v1(ξ̂)2 dξ̂ for ξ > 0.

(5.11)

Whatever the choice of a, v2(ξ; a) is an even function of ξ. Also, it solves the homogeneous
problem (5.9) for κ = 0 at both sides of the origin. However, we still need to check that v2 is
smooth at ξ = 0. Using the fact that v f ,h(ξ; u∗) is a solution to the fast reduced system (2.5)
which is homoclinic to the origin (Assumptions 2.2, (A5)), integrating (2.5) once yields(

d
dξ

v f ,h

)2

= v2
f ,h − 2

∫ v f ,h

0
G(u∗, v) dv. (5.12)
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Using (5.12), we see that

lim
ξ↑0

v2(ξ; a) = lim
ξ↓0

v2(ξ; a) =
−1

v f ,h(0; u∗) −G(u∗, v f ,h(0; u∗))
(5.13)

so v2(ξ; a) is continuous at the origin. However, for an even function such as v2 to be differenti-
able at the origin, we need to make sure that both limξ↑0

dv2
dξ and limξ↓0

dv2
dξ vanish at ξ = 0.

Lemma 5.3. Consider

f (a) =
1

v1(a)
+

∫ a

0

(
1 −

∂G
∂V

(u∗, v f ,h(ξ; u∗)
)

v1(ξ)
∫ a

ξ

1
v1(ξ̂)2

dξ̂ dξ. (5.14)

There exists a unique value a∗ > 0 such that f (a∗) = 0.

Proof. Since the integrand in (5.14) is bounded, and v1(ξ)→ 0 as ξ ↓ 0, we see that

f (a){
1

v1(a)
as a ↓ 0,

so f (a)→ −∞ as a ↓ 0. Using integration by parts, f (a) can be represented as

f (a) = lim
ε↓0
−

dv1

dξ
(ε)

∫ a

ε

1
v1(ξ̂)2

dξ̂ +
1

v1(ε)
,

so
d f
da

= lim
ε↓0
−

dv1

dξ
(ε)

1
v1(a)2 = −

dv1

dξ
(0)

1
v1(a)2 . (5.15)

and hence d f
da > 0 for all a > 0. Moreover, since − dv1

dξ (0) is strictly positive and |v1(a)| is bounded

from above, there exists a constant C > 0 such that d f
da > C for all a > 0. Therefore, f (a) is

strictly monotonically increasing, and its derivative is bounded away from zero: hence, f (a)→
∞ as a→ ∞. We conclude that there exists a unique value a∗ > 0 such that f (a∗) = 0. �

Corollary 5.4. There exists a unique a∗ > 0 such that the function v2(ξ; a∗) (5.11) is continu-
ously differentiable at the origin.

Proof. Consider v2(ξ; a) (5.11) for ξ > 0. Integration by parts yields

lim
ξ↓0

dv2

dξ
=

1
v1(a)

+

∫ a

0

d2v1

dξ2 (ξ)
∫ a

ξ

1
v1(ξ̂)2

dξ̂ dξ.

Taking the derivative to ξ of (2.5), we see that

d2v1

dξ2 (ξ) =

(
1 −

∂G
∂V

(u∗, v f ,h(ξ; u∗)
)

v1;

therefore, limξ↓0
dv2
dξ = f (a). �

We conclude that v2(ξ; a∗) is continuously differentiable at the origin, obeys the second or-
der differential equation (5.9) on R \ {0} and is therefore smooth in ξ = 0. Therefore, v2(ξ; a∗)
obeys the equation (5.9) on the entire real line, and is therefore well-defined as a solution to the
homogeneous problem (5.9).

As in the case a) (5.10), we can express the solution v0 to the nonhomogeneous problem
(5.8) in terms of v1,2 as

v0(ξ) = −v1(ξ)
∫ b

ξ

v2(ξ̂; a∗)
[
∂G
∂U

u(0) −C(0, ξ̂)
]

dξ̂ − v2(ξ; a∗)
∫ ξ

−∞

v1(ξ̂)
[
∂G
∂U

u(0) −C(0, ξ̂)
]

dξ̂,
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since the Wronskian of v1,2 yields W(v1, v2) = 1. The integral limit b is still undetermined, due
to the fact that the homogeneous problem (5.9) admits a nontrivial solution v1. Therefore, v0
can be uniquely determined up to a multiple of v1. For future convenience, we choose b such
that v0 is an even function of ξ, i.e. such that∫ b

−b
v2(ξ; a∗)

[
∂G
∂U

u(0) −C(0, ξ̂)
]

dξ = 0. (5.16)

Although for different choices of G and C this equation may have several solutions for b, it is
clear that choosing b = 0 is sufficient to satisfy (5.16). We therefore choose to gauge v0 such
that it is uniquely represented by

v0(ξ) = −v1(ξ)
∫ 0

ξ

v2(ξ̂; a∗)
[
∂G
∂U

u(0) −C(0, ξ̂)
]

dξ̂ − v2(ξ; a∗)
∫ ξ

−∞

v1(ξ̂)
[
∂G
∂U

u(0) −C(0, ξ̂)
]

dξ̂

:= u(0) v0,1(ξ) + v0,2(ξ). (5.17a)

5.2.2 Equation (5.6) outside the fast interval I f

Again basing ourselves on [11], we see that outside the fast interval I f (2.4), both B and C are
exponentially small in ε. Moreover, any bounded solution to (5.8) is also exponentially small
outside I f . Therefore, in x = εξ,

d2

dx2 u −
[
µ + κ − ν1

dF1

dU

]
u = A(x) outside I f (5.18)

up to exponentially small terms in ε, where dF1
dU is evaluated at U = Uh(ξ) = us,0 (±(x∗ + x))

outside I f , see Result 2.3. We obtain two inhomogeneous Sturm-Liouville equations, left and
right of the fast interval I f :

d2

dx2 u −
[
µ + κ − ν1

dF1

dU
(
us,0(x∗ + x)

)]
u = A(x), x > 0, (5.19a)

d2

dx2 u −
[
µ + κ − ν1

dF1

dU
(
us,0(x∗ − x)

)]
u = A(x), x < 0. (5.19b)

We consider the right equation (5.19a), whose homogeneous version is given by

d2

dx2 u −
[
µ + κ − ν1

dF1

dU
(
us,0(x∗ + x)

)]
u = 0, x > 0. (5.20)

Since limx→∞
dF1
dU

(
us,0(x∗ + x)

)
= 0, we can find two linearly independent solutions u±(x) to

(5.20) for which u±(x) { c±e±
√
µ+κ x as x → ∞. Note that (5.20) can be phrased in terms of

Ls(x) (2.13) as (Ls(x) − κ) u = 0; detailed analysis of this slow reduced eigenvalue problem and
information on its spectrum can be found in [11].
We want to solve the Sturm-Liouville problem given by (5.19a) with the boundary condition
limx→∞ u(x) = 0, while the boundary condition at x = 0 stays open. Since u−(x) solves the as-
sociated homogeneous problem, we already know that the solution the inhomogeneous problem
will be determined up to a multiple of u−. Using variation of parameters, we can express the
solution uR to the nonhomogeneous equation (5.19a) in terms of u± as

uR(x) = u−(x)
∫ x

0
u+(x̂) [−A(x̂)] dx̂ + u+(x)

∫ ∞

x
u−(x̂) [−A(x̂)] dx̂ + cRu−(x), (5.21)

where u± are normed such that W(u−, u+) = 1. Note that the open boundary condition at x = 0
can be incorporated in the gauge freedom given by cRu−(x). Since the homogeneous problem
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(5.20) is symmetric in x, we can express the solution uL to (5.19b) for which limx→−∞ uL(x) = 0
in terms of u± as

uL(x) = u+(−x)
∫ x

−∞

u−(−x̂) [−A(x̂)] dx̂ + u−(−x)
∫ 0

x
u+(−x̂) [−A(x̂)] dx̂ + cLu−(−x). (5.22)

5.2.3 Equation (5.6) on the entire real line

We can now combine the results of the previous sections 5.2.1 and 5.2.2 to obtain leading order
expressions for bounded solutions to (5.6). As in section 5.2.1, we consider two cases:

a) The operator (L − κ) is invertible. It follows that (5.6) has a unique solution. To obtain a
leading order expression for that solution, we combine the results of section 5.2.1, case a) and
section 5.2.2. In order to fix the gauge in the solutions left and right of the fast interval I f , we
track the change of the derivative of the slow variable u over that fast interval. In [11], this
technique was used to obtain a leading order Evans function for the stability problem associated
to the pulse from Result 2.3.
We calculate

∆I f

du
dξ

=

∫
I f

d2u
dξ2 dξ

= ε

∫
I f

−ν2
∂F2

∂U
u(0) − ν2

∂F2

∂V
(u(0) v̂1(ξ) + v̂2(ξ)) + B(0, ξ) dξ + O

(
ε

3
2

)
(5.23)

using (5.6), combined with leading order expressions (5.7) and (5.10) for u and v on I f . The
partial derivatives of F2 are evaluated at (U,V) = (u∗, v f ,h(ξ; u∗)). On the other hand, we have

du
dξ

(
ε−

1
4

)
= ε

du
dx

(
ε

3
4

)
= ε

duR

dx
(0) + O

(
ε

7
4

)
and vice versa on the left side of I f . Using the explicit expressions (5.21) and (5.22), we there-
fore obtain

∆I f

du
dξ

= ε

(
duR

dx
(0) −

duL

dx
(0)

)
+ O

(
ε

7
4

)
= ε

(
du−
dx

(0)
∫ 0

−∞

u+(−x̂) [−A(x̂)] dx̂ +
du+

dx
(0)

∫ ∞

0
u−(x̂) [−A(x̂)] dx̂

+(cL + cR)
du−
dx

(0)
)

+ O
(
ε

7
4

)
. (5.24)

Combining this with the fact that u is constant to leading order in I f , i.e.

u(0) = uR(0) = u+(0)
∫ ∞

0
u−(x̂) [−A(x̂)] dx̂ + cRu−(0), (5.25a)

u(0) = uL(0) = u−(0)
∫ 0

−∞

u+(−x̂) [−A(x̂)] dx̂ + cLu−(0), (5.25b)

and that u± are scaled such that the Wronskian equals 1, i.e.

u−(0)
du+

dx
(0) −

du−
dx

(0)u+(0) = 1, (5.26)

20



allows us to express cL/R as

cL +

∫ 0

−∞

u+(−x̂) [−A(x̂)] dx̂ = cR +
u+(0)
u−(0)

∫ ∞

0
u−(x̂) [−A(x̂)] dx̂

= −

1
u−(0)

∫ ∞
0 u−(x̂) [−A(x̂)] dx̂ +

∫ ∞
−∞

ν2
∂F2
∂V v̂2(ξ) − B(0, ξ) dξ

u−(0)
∫ ∞
−∞

ν2
∂F2
∂U + ν2

∂F2
∂V v̂1(ξ) dξ + 2 du−

dx (0)
(5.27)

up to order O
(
ε

3
4

)
. We summarize the above results in the following Lemma:

Lemma 5.5. Assume that (L − κ) is invertible. Then (5.6) has a unique bounded solution ψ =

(u, v)T , for which there are C1,2 ∈ R such that the following holds:

• ψ(ξ) =

(
uR(εξ)

0

)
+ C1e−|C2 |ξ for ξ > ε−

1
4 ;

• ψ(ξ) =

(
uL(εξ)

0

)
+ C1e|C2 |ξ for ξ < −ε−

1
4 ;

• ψ(ξ) =

(
uR(0)
v̂(ξ)

)
+ O(ε

3
4 ) for ξ ∈ I f .

Here uL/R are as given in (5.22)/ (5.21) and v̂ as in (5.10). The gauge constants cL/R in (5.22)/ (5.21)
are determined by (5.27).

The connection with the original problem (5.5) is made in the following Corollary:

Corollary 5.6. Assume that (L − κ) is invertible and that the functions A, B,C are even in each
of their arguments. Then the function ψ as introduced in Lemma 5.5 is the unique, bounded
solution to (5.5).

Proof. This proof is runs along the lines of the proof of Lemma 3.2. When the functions A, B,C
are even in each of their arguments, both the operator (L − κ) –the left-hand side of (5.6)– and
the right-hand side of (5.6) are symmetric in ξ. Therefore, ψ(−ξ) must also solve (5.6). Since ψ
is the unique solution to (5.6), it must be symmetric in ξ. The inner product 〈ψ, d

dξΓh〉 vanishes
identically since d

dξΓh is odd in ξ. We conclude that ψ ∈ X′ and therefore ψ is the unique,
bounded solution to (5.5). �

b) The parameter κ is zero. In this case, the homogeneous equation Lψ = 0 has d
dξΓh as

bounded nontrivial solution. That means that any solution ψ to (5.6) is unique up to a multiple
of d

dξΓh. We can use the projection Π0 (3.11) to orthogonally decompose ψ = C d
dξΓh + ψ0,

where C ∈ R is free and 〈ψ0,
d
dξΓh〉 = 0. The leading order analysis of the previous case a) can

be directly applied to ψ, with v̂ is substituted by v0 (5.17). We can therefore state, analogous to
Lemma 5.5:

Lemma 5.7. Assume κ = 0, then the complete set of bounded solutions to (5.6) is given by
the one-parameter family (ψC)C∈R, where ψC = C d

dξΓh + ψ0 and Π0ψ0 = 0. For ψ0, there are
C1,2 ∈ R such that the following holds:

• ψ0(ξ) =

(
uR,0(εξ)

0

)
+ C1e−|C2 |ξ for ξ > ε−

1
4 ;

• ψ0(ξ) =

(
uL,0(εξ)

0

)
+ C1e|C2 |ξ for ξ < −ε−

1
4 ;
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• ψ0(ξ) =

(
uR,0(0)
v0(ξ)

)
+ O(ε

3
4 ) for ξ ∈ I f .

Here v0 is as in (5.17), and

uL/R,0(x) = uL/R(x) −

∫ 0
−∞

uL(x̂) dUh
dx (x̂) dx̂ +

∫ ∞
0 uR(x̂) dUh

dx (x̂) dx̂∫ ∞
−∞

dUh
dx (x̂)2 dx̂ +

∫ ∞
−∞

dVh
dξ (ξ̂)2 dξ̂

dUh

dx
(x) (5.28)

with uL/R as in (5.22)/ (5.21). The gauge constants cL/R in (5.22)/ (5.21) are determined by (5.27),
with v̂ replaced by v0.

Proof. For each C, the leading order expression for ψC is completely equivalent to that given
in Lemma 5.5, with v̂ replaced by v0 (5.17) since κ = 0. Fixing C and adopting the notation
of Lemma 5.5, the orthogonal projection of ψC onto the complement of the span of d

dξΓh is to
leading order given by∫ 0

−∞
uL(x̂) dUh

dx (x̂) dx̂ +
∫ ∞

0 uR(x̂) dUh
dx (x̂) dx̂ +

∫ ∞
−∞

v0(ξ̂) dVh
dξ (ξ̂) dξ̂∫ ∞

−∞

dUh
dx (x̂)2 dx̂ +

∫ ∞
−∞

dVh
dξ (ξ̂)2 dξ̂

,

using Result 2.3 and (3.4). Since both v0 and Vh are even functions of ξ,
∫ ∞
−∞

v0(ξ̂) dVh
dξ (ξ̂) dξ

vanishes identically. �

The connection with the original problem (5.5) is made in the following Corollary:

Corollary 5.8. Assume that κ = 0 and that the functions A, B,C are even in each of their
arguments. Then the function ψ0 as introduced in Lemma 5.7 is the unique, bounded solution to
(5.5). Moreover, we have uL/R,0 = uL/R.

Proof. The first part of the proof, that ψ0 ∈ X
′ and therefore ψ0 is the unique, bounded solution

to (5.5) for κ = 0, is completely analogous to the proof of Corollary 5.6. Moreover, since ψ0 is
even, we see that uL(x) = uR(−x). As d

dξΓh is odd and therefore dUh
dx (x) = − dUh

dx (−x). Using these
observations in (5.28) yields uL/R,0 = uL/R. �

Moreover, we can use the approach of section 5.2.1, case b) to easily obtain explicit expres-
sions for the solutions u± to (5.20). The convergent function u− is to leading order equal to the
U-component of the translational eigenmode d

dξΓh, i.e.

u−(x) =
dUh

dx
(x) if κ = 0, (5.29)

which in turn allows the divergent function u+ to be expressed as

u+(x) = u−(x)
∫ x

0

1
u−(x̂)2 dx̂ if κ = 0. (5.30)

Using integration by parts, this enables us to express uL/R for κ = 0 more compactly as

uR(x) = u−(x)
∫ x

0

1
u−(x̂)2

∫ ∞

x̂
u−(x̃) [−A(x̃)] dx̃ dx̂ + cRu−(x) if κ = 0, (5.31a)

uL(x) = u−(−x)
∫ 0

x

1
u−(−x̂)2

∫ x̂

−∞

u−(−x̃) [−A(x̃)] dx̃ dx̂ + cLu−(−x) if κ = 0. (5.31b)

5.3 Obtaining leading order expressions for a and b

We can use the results of section 5.2, as given in Lemmas 5.5 and 5.7 and their respective
Corollaries 5.6 and 5.8 to obtain leading order expressions for the constituents of (4.12) and
(4.13).
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5.3.1 Leading order expression for Ψ20

From section 4, we know that the coefficient Ψ20 is the unique solution to (4.8b). That equation
is of the general form (5.5), with κ = 2 iωH and

A(εξ) = −ν1
d2F1

dU2 (φH)2
1 , (5.32a)

B(εξ, ξ) = −ν2D2F2(φH , φH), (5.32b)

C(εξ, ξ) = −D2G(φH , φH). (5.32c)

Since (L − 2 iωH) is invertible, Lemma 5.5 applies. Moreover, since all the partial derivatives
of F1,2 and G are evaluated at the components of the symmetric pulse Γh = (Uh,Vh)T , we can
use Corollary 5.6 to conclude that the leading order expression of Ψ20 can be found by applying
Lemma 5.5 for the specific choices (5.32). Note that in this case, the solutions u− to (5.20) and
v̂ as in (5.10) can be found by applying Result 2.4 for λ = 2 iωH .

5.3.2 Leading order expression for Ψ11

Since L′ is invertible on X′, the coefficient Ψ11 is the unique solution to (4.8c). That equation
is of the general form (5.5), with κ = 0 and

A(εξ) = −2 ν1
d2F1

dU2

∣∣∣(φH)1

∣∣∣2 , (5.33a)

B(εξ, ξ) = −2 ν2D2F2(φH , φH), (5.33b)

C(εξ, ξ) = −2 D2G(φH , φH). (5.33c)

Since κ = 0, Lemma 5.7 applies. Moreover, since all the partial derivatives of F1,2 and G are
evaluated at the components of the symmetric pulse Γh = (Uh,Vh)T , we can use Corollary 5.8
to conclude that the leading order expression of Ψ11 can be found by applying Lemma 5.7 for
the specific choices (5.33).

5.3.3 Leading order expression for Ψ
µ̂
00

Since L′ is invertible on X′, the coefficient Ψ
µ̂
00 is the unique solution to (4.8a). That equation

is of the general form (5.5), with κ = 0 and

A(εξ) = −ν1
dF1

dU
∂Uh

∂µ
, (5.34a)

B(εξ, ξ) = −ν2
∂F2

∂U
∂Uh

∂µ
− ν2

∂F2

∂V
∂Vh

∂µ
, (5.34b)

C(εξ, ξ) = −
∂G
∂U

∂Uh

∂µ
−
∂G
∂V

∂Vh

∂µ
. (5.34c)

Since κ = 0, Lemma 5.7 applies. Moreover, since all the partial derivatives of F1,2 and G are
evaluated at the components of the symmetric pulse Γh = (Uh,Vh)T , we can use Corollary 5.8
to conclude that the leading order expression of Ψ

µ̂
00 can be found by applying Lemma 5.7 for

the specific choices (5.34).
Moreover, we can use the general setting of section 5.2 to obtain a leading order expression for
∂Γh
∂µ

in terms of (...). By taking the partial derivative of the defining equation (2.2) for (U,V) =

(Uh,Vh), we see that ∂Γh
∂µ

obeys the linear equation

L
∂Γh

∂µ
=

(
Uh

0

)
. (5.35)
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This equation is of the general form (5.6) with κ = 0, B = 0, C = 0 and A(εξ) = Uh(εξ). We can
therefore straightforwardly apply both Lemma 5.7 and Corollary 5.8 to obtain a leading order
expression for ∂Γh

∂µ
, ultimately in terms of Γh and d

dξΓh.

5.3.4 Using leading order expressions in the inner product

We now demonstrate how the specific choice of inner product (3.4) allows us to take advantage
of the leading order expressions of the constituents of (4.12) and (4.13). We consider the inner
product 〈K, φ∗H〉 with

K(εξ, ξ) =

(
A′(εξ) + 1

ε
B′(εξ, ξ)

C′(εξ, ξ)

)
, (5.36)

where we assume that A′, B′,C′ are exponentially decreasing as their arguments tend to ±∞, i.e.

∃CA′
1,2,3,4 ∈ R :

 A′(x){ CA′
1 e−|C

A′
2 |x as x→ ∞

A′(x){ CA′
3 e|C

A′
4 |x as x→ −∞

,

∃CB′
1,2,3,4 ∈ R :

 B′(εξ, ξ){ CB′
1 e−|C

B′
2 |ξ as ξ → ∞

B′(εξ, ξ){ CB′
3 e|C

B′
4 |ξ as ξ → −∞

,

and analogously for C′(εξ, ξ). Using the definition of the inner product (3.4), we see that

〈K, φ∗H〉 =ε

∫ ∞

−∞

A′(εξ)
(
φ∗H

)
1 dξ + ε

∫ ∞

−∞

1
ε

B′(εξ, ξ)
(
φ∗H

)
1 dξ +

∫ ∞

−∞

C′(εξ, ξ)
(
φ∗H

)
2 dξ

=ε

∫ ∞

−∞

A′(εξ) us,0(εξ; iωH)dξ +

∫ ∞

−∞

B′(εξ, ξ) us,0(εξ; iωH)dξ +

∫ ∞

−∞

C′(εξ, ξ) v∗in(ξ; iωH)dξ

=

∫ ∞

−∞

A′(x) us,0(x; iωH) dx + us,0(0; iωH)
∫ ∞

−∞

B′(0, ξ) + C′(0, ξ) v∗in(ξ; iωH) dξ (5.37)

up to order O
(
ε

3
4

)
, using Lemma 5.1. Combining (4.5) with the resuls obtained in this section

on the leading order behaviour of Ψ20, Ψ11 and Ψ
µ̂
00, we see that every term in the inner products

in (4.12) and (4.13) has the structure of K(εξ, ξ) (5.36). Therefore, (5.37) can be straightfor-
wardly applied to obtain explicit leading order expressions for a and b.

Based on the above analysis, we can make the following concluding observation:

Corollary 5.9. Let u±(x) be the two linearly independent solutions to (Ls(x) − 2 iωH) u = 0
for x > 0 (2.13) such that u±(x) { c±e±

√
µ+2 iωH x as x → ∞. Furthermore, let vL/R(ξ) be

the two linearly independent solutions to
(
L f (ξ) − 2 iωH

)
v = 0 for ξ ∈ R (2.12) such that

vL(ξ){ ĉLe
√

1+2 iωH ξ as ξ → −∞ and vR(ξ){ ĉRe−
√

1+2 iωH ξ as ξ → ∞.
These functions, together with the leading order expression for φH as in Result 2.4 and the lead-
ing order expression for Γh as in Result 2.3 are sufficient to obtain the leading order expressions
for the normal form coefficients a and b, as in (4.2).

6 Breathing pulses
The weakly nonlinear stability analysis given in sections 3 and 4 can now be used to investigate
the dynamics of the pulse Γh (see Result 2.3) when it undergoes a destabilising Hopf bifurcation.
The following is a version of Theorem 2.6 in [20].

Theorem 6.1 (Existence and structure of breathing pulses). Let Γh be the pulse solution to
(2.2) as established in Result 2.3. Assume that there exist parameter values (µH , ν1,H , ν2,H) for
which the spectrum of L (2.9) is given by (3.2). Fix ν1 = ν1,H , ν2 = ν2,H and let µ = µH + µ̂, with
0 < |µ̂| � 1. Furthermore, take a and b as given in (4.12) resp. (4.13).
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• If Re b > 0, then the Hopf bifurcation is subcritical. For µ̂Re a < 0, the pulse is stable;
for µ̂Re a > 0 , the pulse is unstable.

• If Re b < 0, then the Hopf bifurcation is supercritical. For µ̂Re a < 0, the pulse is stable;
for µ̂Re a > 0 , the pulse is linearly unstable. However, there exists a stable oscillating
solution Γosc(ξ, t) to (2.2) nearby, which is given by

Γosc(ξ, t) = Γh(ξ) +
√
|µ̂|

√∣∣∣∣∣Re a
Re b

∣∣∣∣∣eiωH t φH(ξ) + c.c. + O (|µ̂|) . (6.1)

Proof. The weakly nonlinear stability of Γh near a Hopf bifurcation is determined by the normal
form equation (4.2). Writing A(t) = r(t) ei θ(t), we obtain the system

ṙ = µ̂Re a r + Re b r3 + O
(
r(|µ̂| + r2)2

)
, (6.2a)

θ̇ = ωH + O
(
|µ̂| + r2

)
. (6.2b)

The trivial equilibrium r = 0 of equation (6.2a) is stable when µ̂Re a < 0 and unstable when
µ̂Re a > 0. Equation (6.2a) has a nontrivial leading order equilibrium if and only if there exists
a positive solution r = r∗ to

r2 = −µ̂
Re a
Re b

.

This equilibrium r∗ = O
(√
|µ̂|

)
has opposite stability to r = 0, i.e. r∗ is stable if and only if

µ̂Re a > 0. Using (4.1) yields the expansion for Γosc(ξ, t) (6.1). �

Numerical investigation of the normal form coefficients a (4.12) and b (4.13), by the explicit
leading order analysis presented in section 5, can be combined with the result of Theorem 6.1 to
obtain rigorous results on the existence and structure of breathing pulses in systems of the form
(2.2).

6.1 Application: a slowly nonlinear Gierer-Meinhardt system
In [32], the existence and stability of pulse solutions as considered in section 2 was established
for a slowly nonlinear Gierer-Meinhardt system, given by: Ut = Uxx −

(
µU − ν1Ud

)
+ ν2

ε
V2

Vt = ε2Vxx − V + V2

U

. (6.3)

The original Gierer-Meinhardt equation, a canonical model for morphogenesis which is studied
extensively in the context of pattern formation [6, 9, 15, 21, 26, 28], can be recovered from (6.3)
by setting ν1 = 0. The system (6.3) is of the form (2.1) with

F1(U; ε) = Ud, d > 1, F2(U,V; ε) = V2, G(U,V; ε) =
V2

U
. (6.4)

The nonlinearities F2 and G are chosen according to the ‘classical’ Gierer-Meinhardt model.
The ‘slow’ nonlinearity F1 is absent in the Gierer-Meinhardt model, but was introduced in [32]
to study the influence of such a slow nonlinearity on the pulse construction and stability.
It can easily be verified that the above choice for F1,2 and G (6.4) satisfies Assumptions 2.2 (A1
- A4). The reduced fast system (2.5) takes the form v f ,ξξ = v f −

1
u0

v2
f , which has a homoclinic

solution
v f ,h(ξ; u0) =

3u0

2
sech2 1

2
ξ, (6.5)
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satisfying Assumptions 2.2, (A5). Using this homoclinic solution, Dp(u0) (2.7) can be calculated
as

Dp(u0) =

∫ ∞

∞

(
v f ,h(ξ; u0)

)2
dξ = 6u2

0, (6.6)

which means that Assumptions 2.2, (A6) is satisfied once the factor 6 is scaled out by rescaling
ν2 → ν̂2 = 6ν2. The choice of F1 realises the reduced slow system (2.6) as us,xx = µ us − ν1ud

s ,
which also has an orbit homoclinic to the origin. The u-component of this orbit, which is in
particular forward asymptotic to the origin, is given by the function

us,0(x) =

(
µ(d + 1)

2ν1
sech2 1

2
(d − 1)

√
µ x

) 1
d−1

. (6.7)

The pulse existence condition (2.8) becomes

2ν1

d + 1
ud−1 = µ −

3
2
ν̂2u2, (6.8)

which always has precisely one positive solution u = u∗. Using the above, Result 2.3 yields the
existence and leading order expression of the pulse solution to (6.3), which we will denote by
ΓnGM

h .
The fast linear operator (2.12) takes the form

L f (ξ) =
d2

dξ2 −

[
1 − 3 sech2 1

2
ξ

]
, ξ ∈ R, (6.9)

which has eigenvalues λ f ,0 = 5
4 , λ f ,1 = 0 and λ f ,2 = − 3

4 . The slow linear operator (2.13) is
realised as

Ls(x) =
d2

dx2 − µ

[
1 −

d(d + 1)
2

sech2 1
2

(d − 1)
√
µ (x∗ + x)

]
, x ≥ 0. (6.10)

Both equations can be solved explicitly in terms of associated Legendre functions [3], see [32]
for a full and detailed analysis.

As in the general case [11], the eigenvalues for the pulse solution ΓnGM
h to (6.3) can be

determined using Evans function techniques. In [32], an explicit leading order expression for the
Evans function was found in terms of associated Legendre functions, see Theorem 3.10 in [32].
This leading order Evans function can be directly numerically evaluated for different parameter
values. In Figure 4, the pulse eigenvalues are plotted in the complex plane for fixed ν1,2 and d,
while varying µ. Here, the influence of the slow nonlinear term F1(U) = Ud (6.4) can be clearly
seen. For d = 2, the eigenvalue orbit crosses the imaginary axis for µ = µH = 1.47986 . . . at
λ = iωH = 1.47638 . . . i, and it becomes clear that the pulse is stable for all µ > µH (see [32],
Theorem 4.6). However, for d = 5, the eigenvalue orbit exhibits a different behaviour. After
an initial stabilising Hopf bifurcation for µ = µH,1 = 0.4173 . . . at λ = iωH,1 = 0.958684 . . . i,
the eigenvalue orbit turns around and undergoes a second, destabilising Hopf bifurcation for
µ = µH,2 = 5.134 . . . at λ = iωH,1 = 3.78646 . . . i.

This turning behaviour is general for d > 3, see [32], Theorem 4.7. That means that for all
d > 1, there is an neighbourhood of (ν1, ν2) = (2, 1

2 ) in parameter space such that there is a (pos-
sibly bounded) interval in µ for which the pulse ΓnGM

h is stable. At the boundary of this interval,
the pulse destabilises through a Hopf bifurcation. Since our parameter space {(µ, ν1, ν2, d)} is
four-dimensional, we can determine the (boundaries of the) stability region by intersecting it
with two-dimensional hyperplanes, i.e. by fixing two parameters. In Figure 5, the boundary of
this stability region is determined for different values of d and ν1, with µ and ν2 as free para-
meters. The two Hopf bifurcation values for d = 5, ν1 = 2, ν2 = 1

2 are indicated on the blue
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Figure 4: The eigenvalues of the pulse solution to (6.3) to leading order in ε as a function of
increasing µ, indicated by the arrow. Since the pulse eigenvalues come in complex conjugated
pairs, only the upper half of the complex plane is shown. Here, ν1 = 2 and ν2 = 1

2 (i.e.
ν̂2 = 3) are fixed. For d = 2 (left figure), the pulse undergoes one stabilising Hopf bifurcation
for µ = µH = 1.47986 . . . at λ = iωH = 1.47638 . . . i. For d = 5 (right figure), a second,
destabilising Hopf bifurcation takes place for µ = µH,2 = 5.134 . . . at λ = iωH,1 = 3.78646 . . . i,
while the first Hopf bifurcation is at µ = µH,1 = 0.4173 . . . with λ = iωH,1 = 0.958684 . . . i for
these parameter values.
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Figure 5: Curves of Hopf bifurcation parameter values in the (ν2, µ)-plane. Top, ν1 = 2; bi-
furcation curves are plotted for d = 4, 5, 6. Middle, d = 5; bifurcation curves are plotted for
ν1 = 1, 2, 3. Bottom, ν1 = 2, bifurcation curves are plotted for d = 2, 3, 4. These curves form
the boundary of the region in parameter space for which the pulse ΓnGM

h is stable. In the top and
middle figures, the bifurcation values µH,1 = 0.4173 . . . and µH,2 = 5.134 . . . for d = 5, ν2 = 1

2
are indicated, c.f. Figure 4 (right).
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Figure 6: In the left figure, the Hopf frequencies are plotted as a function of ν2, for d = 5 and
ν1 = 2. The lower branch, representing ωH,1, is indicated in blue; the upper branch, representing
ωH,2, is indicated in red. In the right figure, the value of Re b is plotted, using corresponding
colors. It can be seen that the the value of Re b corresponding to ωH,1 changes sign at ν2 = ν∗2 =

2.3196 . . .; there, the nature of this lower branch Hopf bifurcation changes from subcritical to
supercritical.

curve in both figures. The Hopf bifurcations merge into a singular Hopf bifurcation where the
bifurcation curves meet in a fold.

In Figure 6, left, the Hopf frequencies for d = 5 and ν1 = 2 are plotted as a function of
the parameter ν2. The merging of Hopf bifurcations can again be observed. For these Hopf
eigenvalues, the normal form coefficient b (4.13) was calculated according to Corollary 5.9. It
can be seen that the Hopf bifurcations of the upper branch have a positive –even large– value
of Re b, and are therefore subcritical (Theorem 6.1). However, for the lower branch of Hopf
bifurcations, it is seen that the sign of Re b can change. Note that this lower branch corresponds
with the stabilising Hopf bifurcation λ = iωH,1 which is present for all d, see Figure 4. A col-
lection of such curves of Re b is shown in Figure 7, based on the associated Hopf curves from
Figure 5. It is clear that this crossing from sub- to supercriticality is a general phenomenon, and
is therefore not restricted to the specific choice of parameters used to produce these Figures.

The direct numerical evaluation of Re b, made possible by the result of Corollary 5.9, en-
ables us to draw conclusions about the sub- or supercriticality of the Hopf bifurcations of pulses
in the slowly nonlinear Gierer-Meinhard model (6.3). Based on the criticality curves shown in
Figure 7, we can take a well-chosen point in parameter space, e.g. (ν1, ν2, d) = (2, 3, 5), such
that one of the two Hopf bifurcations for this parameter triplet is subcritical, and the other su-
percritical. By continuous dependence on parameters, we can then state the following Theorem:

Theorem 6.2. Let ε > 0 be sufficiently small. There exists an open nonempty neighbourhood
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Figure 7: An overview of several criticality curves, corresponding to the Hopf bifurcation curves
shown in Figure 5. The color coding coincides. It can be seen that the transition from sub- to
supercriticality is a general phenomenon for pulse solutions of (6.3).
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V in (ν1, ν2, d)-parameter space such that the following holds. For any (ν1, ν2, d) ∈ V, there
are two Hopf bifurcation values µH,1(ν1, ν2, d) and µH,2(ν1, ν2, d) with µH,1 < µH,2 for which the
associated pulse eigenvalues are given by λH,1 = iωH,1 resp. λH,2 = iωH,2 with ωH,1, ωH,2 ∈

R. The Hopf bifurcation λH,1 = iωH,1 is supercritical; the Hopf bifurcation λH,2 = iωH,2 is
subcritical.

In Figure 8, the leading order results of the theory presented in this paper are compared with
direct numerical simulations using the pdepe routine in MATLAB [1], for ε = 0.01. The results
of the analysis, which predicts a supercritical Hopf bifurcation and therefore by Theorem 6.1 a
stable breathing pulse, are reflected in the numerical simulations, where such a breathing pulse
is indeed observed.

It is now quite straightforward to obtain a result which was suggested, but not confirmed, in
previous literature on the ‘canonical’ Gierer-Meinhardt system, i.e. (6.3) with ν1 = 0. In [6],
the existence and stability of pulse solutions in Gierer-Meinhardt type systems was established
using ideas similar to those used in [32] and [11]. There, it was shown that for µ = µH = 0.36 . . .,
the pulse undergoes a Hopf bifurcation. Numerical simulations [8, 34] suggested that this Hopf
bifurcation is subcritical. This observation is confirmed by direct numerical evaluation of (the
real part of) the normal form coefficient b, which has the value Re b = 0.48 . . . > 0. As a
consequence, the following Corollary is a direct result from numerical evaluations equivalent to
those underlying Theorem 6.2:

Corollary 6.3. Let ε > 0 be sufficiently small. The Hopf bifurcation associated to the classical
Gierer-Meinhardt pulse is subcritical.

7 Discussion
The research presented in this paper was inspired by the observation of stable oscillating pulses
in the slowly nonlinear Gierer-Meinhardt model, see [32], section 5. There, it was shown that
numerical simulations of the full PDE system suggested the existence of breathing pulses (pos-
sibly with a dynamically modulated amplitude) near parameter values for which the stationary
pulse undergoes a Hopf bifurcation. The hypothesis that such a Hopf bifurcation could be the
‘birthplace’ of these breathing pulses is confirmed in the current paper. A consequence of the
supercriticality of the Hopf bifurcation, established in Theorem 6.2, is that stable periodically
modulated pulse amplitudes (i.e. breathing pulses) can and do indeed exist.

However, this is not the end of the story. The centre manifold associated to the Hopf bi-
furcation has only been expanded up to third order. A fifth order expansion, for example near
the generalised Bautin point where the Hopf bifurcation transgresses from sub- to supercritical-
ity, can in principle be carried out. This would entail performing an analysis analogous to that
presented in sections 4 and 5, using the extended fifth order normal form

dA
dt

= iωH A +
(
a0 µ̂ + a1 µ̂

2
)

A + (b0 + b1 µ̂) A |A|2 + c A |A|4 + O
(
A(|µ̂| + |A|2)3

)
, (7.1)

compare (4.2). This way, the first steps towards a more encompassing description of the dy-
namically modulated pulse amplitude near Hopf bifurcations can be taken. Numerical results
from [32], section 5 suggest that this amplitude can be quasiperiodically or even chaotically

modulated. Note that (7.1) allows for a µ̂-independent periodic orbit with radius
√
−

b0
c , which

might interact with the stable pulse near a Hopf bifurcation for sufficiently large perturbations.

It is worthwhile to note that the procedure to obtain explicit expressions for the Hopf nor-
mal form, as presented in this paper, is not restricted to the stationary pulse solution, which
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Figure 8: Top left, the pulse amplitude modulation |A(t)| (4.1) is plotted as a function of the
principal bifurcation parameter µ, for (ν1, ν2, d) = (2, 3, 2). As µ decreases, a stable oscillating
pulse bifurcates at µ = µH,1 = 0.502 . . .; the now unstable stationary pulse is indicated by the
dashed line. The other figures show the results of a direct numerical simulation of the full system
(2.1), presented by a plot of the U-component of the pulse tip at x = 0 as a function of time.
The simulations were obtained by the pdepe routine in MATLAB [1], for the parameter values
(ν1, ν2, d) = (2, 3, 2) and ε = 0.01. Top right, for µ = 0.55, the pulse is seen to be stable under
perturbations. As µ is decreased to µ = 0.51, we see a small perturbation leading to a stable
oscillating pulse (bottom left). The oscillation of the pulse tip can be observed more clearly in
a segment of the simulated time domain (bottom right). We see that the results of the direct
numerical simulations argree very well with the leading order analysis.
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was analysed in [32] and [11]. The procedure is in principle valid for (multi)pulses and fronts
in singularly perturbed reaction-diffusion systems: as long as one is able to obtain an explicit
expression for the stationary pattern (and, more importantly, for its eigenfunctions), the tech-
niques presented in this paper can be used to obtain an explicit expression for the normal form
expansion coefficients, which can be directly numerically evaluated, allowing one to gain more
insight in the dynamical properties of the pattern under consideration.
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